Measurement of Specular Reflectivity

In specular reflectivity measurements, neutrons impinge upon the sample surface at a angle θ_i and are scattered at an angle θ_f . The incident and exit angles are equal ($\theta=\theta$ and incremented together. The wave vector \mathbf{Q}_z is defined as $4\pi\sin\theta/\lambda$, where λ is neutron wavelength. Above the critical angle θ_c for total internal reflection, the da show finite-size fringes whose separation are inversely related to the film layer thicks After subtraction of the off-specular background, these data can be fit (or inverted) to obtain a real-space profile of the scattering length density as a function of depth.

